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How Black Holes Violate the Conservation of Energy
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Email: physics@dougweller.com

Black holes produce more energy than they consume thereby violating the conservation
of energy and acting as perpetual motion machines.

1 Introduction

According to Stephen Hawking and Leonard Mlodinow [1]:
“Because there is a law such as gravity, the Universe can
and will create itself from nothing.” Such views of gravity
are usually attributed as being rooted in Einstein’s general-
relativistic space-time.

However, the field equations Einstein [2] used to describe
the general-relativistic space-time are founded on the con-
servation of momentum and energy. How can a space-time
derived based on the conservation of momentum and energy
provide an ex nihilo source of energy sufficient to create a
universe?

The answer is found in Karl Schwarzschild’s solution [3]
to the field equations, usually called the Schwarzschild met-
ric. The Schwarzschild metric describes a gravitational field
outside a spherical non-rotating mass. When the mass is com-
pacted within its Schwarzschild radius it is commonly re-
ferred to as a black hole.

Herein the terms of the Schwarzschild metric are rear-
ranged to display limits in the Schwarzschild metric that nec-
essarily result from the conservation of momentum and en-
ergy. Then is shown how black holes violate the limits, acting
as perpetual motion machines that produce more energy than
they consume.

2 Expressing the Schwarzschild metric using velocities

In this section, the Schwarzschild metric is rearranged so as
to be expressed using velocities measured with reference co-
ordinates. This rearrangement, which appears as equation (8)
at the end of this section, will make very clear the limits im-
posed within the Schwarzschild metric by the conservation of
momentum and energy.

Einstein [4] originally expressed the principles of special
relativity using velocities measured with reference coordi-
nates. However, Einstein [2, Equations 47] expressed the field
equations in more abstract terms, using tensors. Einstein was
careful to show that the field equations, nevertheless, corre-
spond to the conservation of momentum and energy [2, Equa-
tions 47a] and thus have a nexus to physical reality.

The Schwarzschild metric, as a solution to the field equa-
tions, also corresponds to the conservation of momentum and
energy. Arrangement of the Schwarzschild metric as in (8) al-
lows for an intuitive comprehension of exactly how momen-
tum and energy is conserved.

For a compact mass M with a Schwarzschild radius R,

the Schwarzschild metric is often expressed using reference
space coordinates (r, θ, φ), coordinate time t and local time τ
(often referred to as proper time τ), as
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r

)
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The Schwarzschild metric as shown in (1) can be rearranged
to form (8), as shown below. To obtain (8) from (1), begin by
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which allows motion in all dimensions to be measured with
respect to the reference coordinates (r, θ, φ, t). The terms of
(2) can be rearranged as
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(3)

The terms in (3) can be grouped by defining three different
velocities. A velocity through the three dimensions of curved
space can be defined as

vS =
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1
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(
dr
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)2

+ r2

(
dθ
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)2

+ (rsinθ)2

(
dφ
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)2

. (4)

A velocity of local time through a time dimension can be de-
fined as

vτ = c
dτ
dt
. (5)

A gravitational velocity can be defined as

vG = c

√
R
r
. (6)

Using the definitions in (4), (5) and (6), (3) reduces to

c2 = v2
τ + v2

G + v2
S . (7)

Equation (7) can be expressed using orthogonal vectors~vτ,~vG

and ~vS where vτ = |~vτ|, vG = |~vG | and vS = |~vS |, and where

c =
∣∣∣~vτ +~vG +~vS

∣∣∣ . (8)
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Equation (8) is mathematically equivalent to (1) and expres-
ses the Schwarzschild metric as a relationship of vector ve-
locities. The conservation of momentum and energy, as ex-
pressed in the Schwarzschild metric, requires that the magni-
tude of the sum of the velocities is always equal to the con-
stant c. Before exploring the full implication of this relation-
ship, the next section confirms that (8) conforms with what is
predicted by special relativity.

3 Equation (8) and special relativity

In the previous section, the Schwarzschild metric in (1) has
been rearranged as (8) to provide a more concrete picture
of the relationships necessary for conservation of momentum
and energy.

Here is confirmed (8) is in accord with the case of special
relativity for unaccelerated motion.

When there is no acceleration and therefore no gravity
field, R = 0 and thus according to (6), vG = 0 so that (8)
reduces to

c =
∣∣∣~vτ +~vS

∣∣∣ . (9)

When R = 0,

vS ,R=0 =

√(
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(
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, (10)

which expressed in Cartesian coordinates is the familiar form
of velocity used in special relativity,

vS ,R=0 =

√(
dx
dt

)2

+

(
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dt

)2

+

(
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)2

. (11)

Equation (9) accurately reproduces the relationship of veloc-
ity and time known from special relativity. As velocity vS

in the space dimensions increases, there is a corresponding
decline in the velocity vτ in the orthogonal time dimension.
When velocity in the time dimension reaches its minimum
value (i.e., vτ = 0) this indicates a maximum value (i.e.,
vS = c) in the space dimensions has been reached.

Equation (9) can be rearranged to confirm it portrays ex-
actly the relationship between coordinate time and local time
that is known to occur in the case of special relativity. Specif-
ically, from the relationship of the orthogonal vectors ~vτ, and
~vS in (9), it must be true that

c2 = v2
τ + v2

S . (12)

and thus from (5)

c2 = c2
(

dτ
dt

)2

+ v2
S , (13)

and therefore

dτ
dt

=

√
1 − v

2
S

c2 , (14)

which is a form of the well known Laplace factor indicating
the relationship between local time and coordinate time for
special relativity.

4 Equation (8) and limits imposed by the conservation
of momentum and energy

The arrangement of the Schwarzschild metric in (8) allows
for a more concrete explanation of the limitations inherent
in the Schwarzschild metric that necessarily result from the
conservation of momentum and energy.

The vector sum of ~vτ, ~vG and ~vS establishes a maximum
value of c for each individual vector velocity.

When ~vτ = 0 and ~vS = 0, ~vG reaches its maximum value
of c. Gravitational velocity ~vG cannot exceed its maximum
value of c without violating (8).

According to the definition of vG in (6), when vG = c, then
r = R. When r < R, then vG > c; therefore, according to (8),
r < R never occurs. As shown by Weller [5], matter from
space can never actually reach r = R, but if it could, it would
go no farther. At r = R and vG = c, all motion through space
stops (~vS = 0) and local time stops (~vτ = 0, so dτ/dt = 0).
Without motion in time or space, matter cannot pass through
radial location r = R.

This section has shown that because of the conservation of
momentum and energy — as expressed by the Schwarzschild
metric arranged as in (8) — matter from space cannot cross
the Schwarzschild radius R to get to a location where r < R.

The following sections consider conservation of energy
equivalence in the Schwarzschild metric and the result when
energy conservation is not followed.

5 Apportionment of energy equivalence

Einstein [6] pioneered apportioning energy differently based
on reference frames, using such an apportionment in his ini-
tial calculations deriving the value for the energy equivalence
of a mass (i.e., E = mc2).

This notion of apportionment of energy equivalence is a
helpful tool in understanding the implications of violating the
conservation of energy and momentum in the Schwarzschild
metric. When considering apportionment of energy equiv-
alence in the Schwarzschild metric, it is helpful to keep in
mind how Einstein makes a distinction between “matter” and
a “matterless” gravitational field defined by the field equa-
tions or by the Schwarzschild metric. According to the Ein-
stein [2, p. 143], everything but the gravitation field is de-
noted as “matter”. Therefore, matter when added to the mat-
terless field includes not only matter in the ordinary sense, but
the electromagnetic field as well.

How the Schwarzschild metric apportions energy equiva-
lence can be understood from

c2 = v2
τ + c2 R

r
+ v2

S . (15)
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which is (7) modified so as to replace vG with its equivalent
given in (6). Equation (15) is mathematically equivalent to
(1), just rearranged to aid in the explanation of the apportion-
ment of energy equivalence.

Equation (15) can be put into perhaps more familiar terms
by introducing a particle of mass m into the gravitation field.
The energy equivalence mc2 of the mass m is apportioned ac-
cording to (15) as

mc2 = mv2
τ + mc2 R

r
+ mv2

S . (16)

In order to provide insight into the nature of the gravitational
energy component c2R/r in (15) —which appears as mc2R/r
in (16) — the next section discusses briefly how this term
came to reside in the Schwarzschild metric.

6 Schwarzschild’s description of gravity

One of the issues Schwarzschild [3, see §4] faced when deriv-
ing the Schwarzschild metric was how to describe the effects
of gravity. He chose to do so using a positive integration con-
stant that depends on the value of the mass at the origin. As a
result the Newtonian gravitational constant G appears in the
Schwarzschild metric. In (1) the gravitational constant G ap-
pears as part of the definition of the Schwarzschild radius R.
In both Newtonian physics and the Schwarzschild metric, the
Schwarzschild radius (R) — the location where Newtonian
escape velocity (i.e., vG) is equal to c — is defined as

R =
2GM

c2 . (17)

When the Schwarzschild metric is arranged as in (15), grav-
itational energy component c2R/r increases toward infinity
as radial location r decreases toward zero. This suggests the
location of an unlimited energy source within the Schwarz-
schild metric; however, total gravitational energy is limited
by the requirement that energy be conserved, as illustrated by
the hypothetical described in the next section.

7 A hypothetical illustrating the conservation of energy
equivalence in the Schwarzschild metric

The total energy-equivalence of a system comprised of a mass
M can be defined as

EM = Mc2, (18)

where the energy of magnetic fields is included in M, or ne-
glected. If a mass m is added to the system, the additional
energy E added to the system as a result of the presence of
mass m is also well known to be

E = mc2. (19)

Thus if the system consisting of mass M and mass m were
dissolved into radiation, the total resulting energy would be
equal to

EM + E = Mc2 + mc2. (20)

In order for the conservation of energy to be maintained in the
system as a whole, any gravitational energy EG or any energy
from motion EK that is added to the system as a result of the
presence of mass m must be included as part of the additional
energy E described in (19). Therefore, the additional energy
E present in the system as a result of adding mass m can be
expressed as

E = mc2 = EK + EG + Eτ, (21)

where Eτ is the portion of energy E that is not represented by
gravitational energy component EG or motion energy compo-
nent EK .

Equation (21) is the apportionment of energy equivalence
shown in (16). To confirm this, in (21) set EG = mc2R/r,
EK = mv2

S and Eτ = mv2
τ to obtain (16).

The apportionment of energy equivalence in (16) and (21)
indicates why crossing the Schwarzschild radius R violates
the conservation of energy. When the particle reaches the
Schwarzschild radius R — i.e., r = R — the entire energy
equivalence of mass m, is consumed by the gravitation com-
ponent, i.e., EG = mc2R/R = mc2 . There is no energy left
for mass m to travel in time (i.e., Eτ = 0) or in space (i.e.,
EK = 0). Therefore at locations r = R, all motion in time and
space must stop, preventing mass m from ever crossing the
critical radius.

If mass m were from space to cross the Schwarzschild
radius R, the gravitational energy component EG = mc2R/r
would exceed the total energy equivalence E = mc2 violating
the conservation of energy.

If the particle were allowed to reach r = 0, gravitational
energy component EG = mc2R/r would approach infinity be-
fore becoming undefined.

8 How black holes act as perpetual motion machines

A perpetual motion machine is a hypothetical machine that
violates the conservation of energy by producing more energy
than it consumes.

According to the conservation of momentum and energy
described by the Schwarzschild metric, see (8) and (15), a
particle can never from space cross the Schwarzschild radius
R of a compact mass M.

When a black hole is formed from a compacting mass
M, the last particle on the surface of the mass that reaches
and crosses the Schwarzschild radius R violates (8). Every
particle thereafter that from space crosses R violates (8).

Further, from (16), each particle of mass m that reaches
a radial location r < R, produces an amount of gravitational
energy (EG = mc2R/r) that is greater than its total energy
equivalence mc2, as can only happen in a perpetual motion
machine. When a particle is allowed to approach and reach
r = 0, the ultimate perpetual motion machine is created which
from the finite energy equivalence mc2 of the particle pro-
duces an unlimited amount of gravitational energy as the par-
ticle approaches r = 0.
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9 Concluding Remarks

Describing the effects of gravity using a gravitational constant
and violating the conservation of momentum and energy de-
scribed by the Schwarzschild metric can hypothetically result
in black holes that act as perpetual motion machines able to
produce an unlimited amount of energy. However, the exis-
tence of such perpetual motion machines is not in accordance
with the conservation of momentum and energy as expressed
in Einstein’s general-relativistic space-time.

Special mathematical calculations, including use of spe-
cially selected coordinates, have been used to explain how
a particle can cross the Schwarzschild radius allowing black
holes to form. Critiquing these mathematical calculations
is beyond the scope of this short paper. The author has di-
rectly addressed some of this subject matter in a companion
paper [5].

Submitted on November 16, 2010 / Accepted on December 15, 2010

References
1. Hawking S., Mlodinow L. The grand design. Bantom Books, New

York, 2010, p. 180.

2. Einstein A. The foundation of the general theory of relativity. The Prin-
ciple of Relativity. Dover Publications, New York, 1923. pp. 111–164.

3. Schwarzschild K. On the gravitational field of a mass point accord-
ing to Einstein’s theory. Translated by S. Antoci, A. Loinger, 1999,
arXiv:Physics/9905030.

4. Einstein A. On the electrodynamics of moving bodies. The Principle of
Relativity. Dover Publications, New York, 1923, pp. 37–65.

5. Weller D. Five fallacies used to link black holes to Einstein’s relativistic
space-time. Progress in Physics, 2011, v. 1, 93–97.

6. Einstein A. Does the inertia of a body depend upon its energy-content?
The Principle of Relativity. Dover Publications, New York, 1923, pp.
69–71.

92 Douglas L. Weller. How Black Holes Violate the Conservation of Energy


